Cylinder Deactivation
Author: Harrell, Rick
Publication:www.gassavers.org Date:11/16/2005 Background: Some of today's modern V-8 and V-6 engines utilize a complex mechanism known as "cylinder deactivation" or "displacement on demand". This feature is reserved for the newest models and those vehicles with the need for a large engine (such as an SUV, Pickup Truck, or Minivan). In some cases, as the DaimlerChrysler Charger/Magnum, a large "HEMI" engine uses cylinder deactivation to cut half of the cylinders under steady cruise with light throttle (on a car/wagon with a powerful engine). GM and Honda also have similar technologies. The process is quite complex and requires cutting fuel and air to the cylinder bank using a mechanical process. This author has brainstormed with this idea before it has become mainstream, but I never really realized how to do it. I then learned on this website that merely cutting power to a series of injectors would essentially achieve similar action. This seemed much easier to implement. The test vehicle is an American-spec 1998 Acura Integra LS 3-door, with the 1.8-Litre DOHC, Non-VTEC, 16-valve, 4-cylinder engine, with an automatic transmission. Although the experiment did not achieve increased fuel economy, further investigation could yield a way to cut fuel to all cylinders during zero throttle input (coasting) and could potentially increase economy. During coasting, this model of vehicle pulses fuel into the cylinders. Complete shutdown could, hypothetically yield an increase. I would not recommend using this procedure on the 4-cylinder engine configuration, similar to mine (described later). Inline-5, Inline-6, V-6, V-8, and potentially H-4 and H-6 (Subaru, Porsche) engines could yield a balanced firing order and even cylinder placement. Unfortunately, my engine failed to perform due to reasons which will be described later. Hypothesis: Deactivating cylinders in low engine-load situations and/or zero-throttle input will yield higher fuel economy. Results: At idle, deactivating the 2-cylinders that worked together yielded in a very unbalanced combustion process, and caused the engine to rock violently forwards and backwards. The only way I could get smooth operation was to run the vehicle at engine speeds upwards of 4000 RPMs. The "LS" engine is a transversely-mounted 4-cylinder that fires at 1-3-2-4 – meaning that cylinder #1 combusts, moves downward, then the same for #3 (probably together). Then the cylinder moves back upward into the compression cycle while 2 and 4 fire. Cylinders 2 and 4 are at Top-Dead Center, when 1 and 3 are at their bottom-most position, etc. Basically there would be a firing of the top 2 cylinders (#2 and #4), then a long pause when 1 and 3 came back up and then down, creating very unbalanced sequence of events and a rocking sensation. This wasn't noticed at higher RPMs because the cylinders were coming back around quick-enough to not create a significant vibration. By the way, cutting fuel only and not fuel and air, results in the deactivated cylinders becoming air pumps. This may have confused the oxygen sensor and catalytic converter. A computerized fuel management system would be recommended to work in-tandem with the deactivation Operating at 4000+ RPMs and utilizing 2 cylinders resulted in the 2 cylinders becoming overly rich, and used more fuel that if all 4 were working as usual. For those out there who have an engine that would accommodate this idea, feel free to experiment, but first Disclaimer: You are assuming your own risk by performing modifications to a vehicle that is either stock from the factory, or has been modified within the scope of local laws; furthermore, this author and/or this website cannot be held responsible for damage resulting from experimentation. Implementation:
Possible uses for this setup could include wiring all cylinders to deactivate on deceleration and partial cylinder running for light-load cruise. Further experimentation and suggestions on this site involve a pendulum device to work in conjunction with the deactivation system. Some concerns could include uneven wear, hot and cold spots, and running too rich. A fuel management system may be indicated to lean the mix. If possible, the other set of cylinders could be wired to a separate switch to allow for even wear (switch to Cylinder Bank "B" at the next fuel up so those cylinders get used. Then at the next fuel stop, switch back to Bank "A"). Further experimentation and additional devices need to be adapted for consistent operation. Good luck, and please report your results. |
They generally deactivate the valves so those cylinders just act as air springs...no pumping losses.
|
Quote:
|
You can take the rocker arms off those valves, eh?
|
Also, if you aren't disabling the valves, it seems you are essentially pumping air through those cylinders into the exhaust stream of the running cylinders. I can see O2 sensor responding and causing the ECU to enrichen to (over) compensate. If you do interrupt the valves, you'd solve that problem only to change the volume of air coming in through the MAF maybe causing the ECU to lean it out too much. Maybe.
|
i dont think its worth it. you still have all of that reciprocating mass. there is no savings in work.
|
What if you were to merely block off the ports on the intake manifold by sandwiching a steel plate between the intake manifold and head rather than disabling the valves? In theory, this should create a vacuum at the intake after just a few revolutions, a vacuum is a lot easier to compress than atmospheric pressure, and there would still be no fluid flow to cause pumping losses.
Personally, if I could disable two of four cylinders easily I wouldn't bother with variable displacement. My car has 120 hp with 4 cylinders, and 60 hp would suit me fine. |
My car has 135bhp with 4 cylinders, and I have been doing some interesting experiments.
I can use the LPG changeover switch to deactivate the injectors to two cylinders (I did this when trying to find out why my mileage computer wouldn't recognise the injectors). I made sure the two cylinders I chose were ones that are opposite to each other, so that it isn't running more unevenly than it needs to. I don't think it does anything for economy (but I will check this when I get my SuperMID working), but some 'fun' things are: (1) If you floor it at about 2500rpm, the turbo will go to full boost, but, there still isn't very much power. Then, if you switch back to 4 cylinders, you get a sudden massive power boost (2) When at 4000rpm on full boost, the fuel is probably running at a 1:11 fuel/air ratio (quite rich). Normally, the hot partially unburnt fuel is just ejected from the exhaust, and has cooled down by then. However, if you have two cylinders pumping air, you get a certain amount of partially burnt fuel being introduced to nice clean air from the two deactivated cylinders. If you then suddenly let go of the accelerator, you get a nice flash + bang from the exhaust!. None of the above are good for economy and have probably brought my tank averages down a bit :). However, I like the idea of the 'air springs' and may see if this has an effect in the future as well. |
Quote:
Run the plug holes via threaded pipe into a heavily muffled air cleaner element to stop the sucking sound. |
Quote:
Piston rings are not good at sealing under these conditions, that is why rings have UP markings. On the up stroke it will try and compress that air. Its better to leave the plug out so that no vacuum can form above the piston and no air is compressed. |
All times are GMT -8. The time now is 08:36 AM. |
Powered by vBulletin® Version 3.8.8 Beta 1
Copyright ©2000 - 2025, vBulletin Solutions, Inc.