Quote:
Originally Posted by HAHA
It would be fun to see what one could do with a variable dynamically adjustable flywheel where you could move a significant weight in and out radially.
|
Dual mass FW do something that (just FYI)... Although, when I asked abut aquiring one - most responses have been that they are typically for heavy duty hauling diesels to isolate vibration and gear chatter...
They use essentially two semi isolated masses. I say semi isolated because they are connected with a spring/damper system. The primary FW is supposed to dampen engine vibration and the secondary (spring/damper connected) FW gives the FW more mass. So there's lag in how the energy goes in, and how the energy goes out.
http://www.lukclutch.com/support/clu...&dir=flywheels
Addressing your variable flywheel (search google for variable moment of inertia flywheel
).... There's critical issues with the simplest form of variable MoI (basically masses on springs that move outward with centripetal forces). The advantage of a FW with a higher mass moment of inertia (typically said: heavier) is that the engine runs smoother, stalls less, launches easier. The advantage of a lighter FW - the engine revs much easier (especially at higher rpm).
So with a variable MoI FW - when launching like a gassaver (not starting at high rpm), you don't have the benefits of a heavier FW. Then, should you ever get up into a higher rev range, your FW is effectively much heavier
So that means we have to make the FW operate in the opposite direction. At slower speeds, have the masses move outward - and at higher rpm, have the masses move inward. Against centripetal forces... Which makes designing much more complicated - not impossible, just not practical.
Finally, the drawback to both variable MoI and dual mass FW's.... They are tuned systems (especially the dual mass). That is, given a specific torque curve/rpm range - the FW result is specific. Otherwise you could run into vibration issues as the system passes a resonant frequency (making acceleration even harder).