I found this on Wikipedia, Just what I was looking for.
Principle
A lean burn mode is a way to reduce throttling losses. An engine in a typical vehicle is sized for providing the power desired for acceleration, but must operate well below that point in normal steady-speed operation. Ordinarily, the power is cut by partially closing a throttle. However, the extra work done in pumping air through the throttle reduces efficiency. If the fuel/air ratio is reduced, then lower power can be achieved with the throttle closer to fully open, and the efficiency during normal driving (below the maximum torque capability of the engine) can be higher.
The engines designed for lean burning can employ higher compression ratios and thus provide better performance, efficient fuel use and low exhaust hydrocarbon emissions than those found in conventional petrol engines. Ultra lean mixtures with very high air-fuel ratios can only be achieved by Direct Injection engines.
The main drawback of lean burning is the large amount of NOx being generated at relatively high air/fuel ratios (ie. greater than stoichiometric but less than 30:1), so a complex catalytic converter system is required unless ultra lean ratios are implemented. Lean burn engines do not work well with modern 3-way catalytic converters, which require a balance of pollutants at the exhaust port in order to carry out both oxidation and reduction reactions, so most modern engines run at or near the stoichiometric point.
Honda lean burn systems
One of the newest lean-burn technologies available in automobiles currently in production uses very precise control of fuel injection, a strong air-fuel swirl created in the combustion chamber, a new linear air-fuel sensor (LAF type O2 sensor) and a lean-burn NOx catalyst to further reduce the resulting NOx emissions that increase under "lean-burn" conditions and meet NOx emissions requirements.
This stratified-charge approach to lean-burn combustion means that the air-fuel ratio isn't equal throughout the cylinder. Instead, precise control over fuel injection and intake flow dynamics allows a greater concentration of fuel closer to the spark plug tip (richer), which is required for successful ignition and flame spread for complete combustion. The remainder of the cylinders' intake charge is progressively leaner with an overall average air:fuel ratio falling into the lean-burn category of up to 22:1.
The older Honda engines that used lean burn (not all did) accomplished this by having a parallel fuel and intake system that fed a pre-chamber the "ideal" ratio for initial combustion. This burning mixture was then opened to the main chamber where a much larger and leaner mix then ignited to provide sufficient power. During the time this design was in production this system (CVCC, Compound Vortex Controlled Combustion) primarily allowed lower emissions without the need for a catalytic converter. These were carbureted engines and the relative "imprecise" nature of such limited the MPG abilities of the concept that now under MPI (Multi-Port fuel Injection) allows for higher MPG too.
The newer Honda stratified charge (lean burn engines) will operate on air-fuel ratios as high as 22:1. The amount of fuel drawn into the engine is much lower than a typical gasoline engine which operates at 14.7:1, the chemical stoichiometric ideal for complete combustion when averaging gasoline to be the petrochemical industries' accepted standard of C6H8.
This lean-burn ability by the necessity of the limits of physics, and the chemistry of combustion as it applies to a current gasoline engine must be limited to light load and lower RPM conditions. A "top" speed cut-off point is required since leaner gasoline fuel mixtures burn slower and for power to be produced combustion must be "complete" by the time the exhaust valve opens.
Applications
1992?95 Civic VX
1996?2000 Civic Hx
2001-05 Civic Hx
2002?05 Civic Hybrid
2000?06 Insight Manual transmission only
|